Ketoisophorone Transformation by Marchantia polymorpha and Nicotiana tabacum Cultured Cells

Mohamed-Elamir F. Hegazy^{a,b,*}, Toshifumi Hirata^b, Ahmed Abdel-Lateff^c, Mohamed H. Abd El-Razek^d, Abou El-Hamd H. Mohamed^e, Nahed M. Hassan^a, Paul W. Paréf, and Ahmed A. Mahmoudg

- ^a Chemistry of Medicinal Plants Department, National Research Centre, Dokki, Cairo,
- Egypt. Fax: 20-23370931. E-mail: elamir77@yahoo.com b Department of Mathematical and Life Sciences, Graduate School of Science,
- Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- ^c Department of Pharmacognosy, Faculty of Pharmacy, El-Minia University, El-Minia 61519, Egypt
- ^d Natural Products Chemistry Department, National Research Centre, Dokki, Cairo, Egypt ^e Department of Chemistry, Aswan-Faculty of Science, South Valley University, Aswan, Egypt
- f Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
- g Department of Chemistry, Faculty of Science, El-Minia University, El-Minia 61519, Egypt
- * Author for correspondence and reprint requests

Key words: Cultured Plant Cells, Hydrogenation, Ketoisophorone

Stereospecific olefin (C=C) and carbonyl (C=O) reduction of the readily available prochiral compound ketoisophorone (2,2,6-trimethyl-2-cyclohexene-1,4-dione) (1) by Marchantia polymorpha and Nicotiana tabacum cell suspension cultures produce the chiral products (6R)-levodione (2), (4R,5S)-4-hydroxy-3,3,5-trimethylcyclohexanone (3), and (4R,6R)-actinol

(4) as well as the minor components (4R)-hydroxyisophorone (5) and (4S)-phorenol (6).

Z. Naturforsch. 63 c, 403–408 (2008); received August 29/November 28, 2007